- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Avrutin, V. (2)
-
Ding, K. (2)
-
Andrieiev, O. (1)
-
Fomra, D. (1)
-
Helava, H. (1)
-
Izyumskaya, N. (1)
-
Kinsey, N. (1)
-
Makarov, Yu. (1)
-
Reshchikov, M. A. (1)
-
Usikov, A. (1)
-
Vorobiov, M. (1)
-
Özgür, Ü. (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Major technological breakthroughs are often driven by advancements in materials research, and optics is no different. Over the last few years, near-zero-index (NZI) materials have triggered significant interest owing to their exceptional tunability of optical properties and enhanced light-matter interaction, leading to several demonstrations of compact, energy-efficient, and dynamic nanophotonic devices. Many of these devices have relied on transparent conducting oxides (TCOs) as a dynamic layer, as these materials exhibit a near-zero-index at telecommunication wavelengths. Among a wide range of techniques employed for the deposition of TCOs, atomic layer deposition (ALD) offers advantages such as conformality, scalability, and low substrate temperature. However, the ALD process often results in films with poor optical quality, due to low doping efficiencies at high (>1020cm−3) doping levels. In this work, we demonstrate a modified ALD process to deposit TCOs, taking Al:ZnO as an example, which results in an increase in doping efficiency from 13% to 54%. Moving away from surface saturation for the dopant (aluminum) precursor, the modified ALD process results in a more uniform distribution of dopants (Al) throughout the film, yielding highly conductive (2.8×10−4Ω-cm) AZO films with crossover wavelengths as low as 1320nm and 1370nm on sapphire and silicon substrates, respectively.more » « less
-
Reshchikov, M. A.; Vorobiov, M.; Andrieiev, O.; Ding, K.; Izyumskaya, N.; Avrutin, V.; Usikov, A.; Helava, H.; Makarov, Yu. (, Scientific Reports)
An official website of the United States government
